
 1

UTAH GOVPAY 3.0:

THE OFFICIAL PAYMENT SOLUTION FOR UTAH GOVERNMENT

Technical Manual

“Extend the power of your website…by taking payments online”

 2

This Utah GovPay Technical Manual contains the following information:

Utah GovPay 3.0: __ 1
The Official Payment Solution for Utah government_____________________________ 1

Govpay Method Options ___ 3
POST Method Overview: __ 3
Post Terminology __ 3
Post Features __ 3
WPS Web Service Method Overview: __ 7
WPS Terminology ___ 8
WPS Features___ 8
Operations ___ 9
Credit Card Security__ 11

 3

GOVPAY METHOD OPTIONS

Utah GovPay provides a secure transaction processing solution to and is able to process transactions in
two different methods. Each of these methods includes different feature sets. The following descriptions
are brief overviews for these methods. Detailed feature sets of each method are located later in this
document.

1. Post method – This method provides a simplistic approach to payment processing by
transmitting payment data via secure URL. It also provides a post back function that will relay
transaction status back to the agency’s application. This method does not allow for multiple line
item payments or customizable data fields.

2. WPS Web service method –This provides a more complex and customizable payment processing
method via secure web service. It can be customized by adding additional data fields and
multiple line items. It does not initiate the return of transaction status data. Transaction status is
obtained only when the agency’s application initiates a query for the transaction status data.

POST METHOD OVERVIEW:

The Utah GovPay POST implementation allows for a simple method of passing customer transaction
information between the agency’s web application and Utah GovPay. The process is initiated by
POSTing information using a URL and Utah GovPay will complete the transaction. Once the
transaction is complete, Utah GovPay will use a post-back URL to return the transaction status to your
agency’s web application.

POST TERMINOLOGY

* Post - The process of transmitting data via URL. The calling application will pass this data string to
GovPay.
* Calling Application – This is the outside application built by the agency.
* Web Service – A piece of software that can be accessed over the Internet by another application using
XML to send or retrieve information.
* Web Application – A web application uses a web site as a front end to interact with users across the
Internet.

POST FEATURES

Current features of the Post method are:

 * Simple yet effective payment method.
 * Register transaction from calling application to GovPay.
 * Post transaction back to calling application.

 4

Please use the test URL until you are ready to accept live transactions. If you have any questions please
contact your product manager at Utah Interactive for assistance.

POST URL for test:
https://test.secure.utah.gov/govpay/checkout

POST URL for production (to be used only to accept live transactions):
https://secure.utah.gov/govpay/checkout

PostParameters

Property Required Description

account_name YES the name of the account we are going to use to
perform this transaction against (this will make sure
it ends up in the correct GovPay account).

post_back_url YES the URL we will use to post transaction data back to
the calling application.

payment_types YES CREDITCARD for credit card, ECHECK for e-
check. If you utilize both separate them with the |
symbol. Example: CREDITCARD|ECHECK.

shared_secret_name ECHECK the Shared Secret name for a Electronic check
transaction (required only when ECHECK is used)

shared_secret_value ECHECK the Shared Secret value for a Electronic check
transaction. (required only when ECHECK is used)

amount YES the amount for this transaction.

transaction_id YES the transaction id you want to give to this
transaction.

item YES the description of the item you are selling.

name NO the name of the person that is going to complete the
transaction (if already known beforehand).

address_line_1 NO the address line 1 of the person that is going to
complete the transaction (if already known

 5

beforehand).

address_line_2 NO the address line 2 of the person that is going to
complete the transaction (if already known
beforehand).

city NO the city of the person that is going to complete the
transaction (if already known beforehand).

postal_code NO the postal code of the person that is going to
complete the transaction (if already known
beforehand).

state NO the state/province of the person that is going to
complete the transaction (if already known
beforehand).

email_address NO the email address of the person that is going to
complete the transaction (if already known
beforehand).

success_url NO the URL we will direct to after the POST
completes.

Post Example:

<html>
 <head><title>GovPay Test Page</title></head>
 <body>
 <form method="POST" action="https://test.secure.utah.gov/checkout">
 <table>
 <tr>
 <td>Post Back URL:</td>
 <td><input type="text" name="post_back_url" value=""></td>
 </tr>
 <tr>
 <td>Amount:</td>
 <td><input type="text" name="amount" value=""></td>
 </tr>
 <tr>
 <td>Transaction ID:</td>
 <td><input type="text" name="transaction_id" value=""></td>
 </tr>
 <tr>
 <td>Description:</td>

 6

 <td><input type="text" name="item" value=""></td>
 </tr>
 <tr>
 <td>Name:</td>
 <td><input type="text" name="name" value=""></td>
 </tr>
 <tr>
 <td>Address line 1:</td>
 <td><input type="text" name="address_line_1" value=""></td>
 </tr>
 <tr>
 <td>Address line 2:</td>
 <td><input type="text" name="address_line_2" value=""></td>
 </tr>
 <tr>
 <td>City: </td>
 <td><input type="text" name="city" value=""></td>
 </tr>
 <tr>
 <td>Postal Code: </td>
 <td><input type="text" name="postal_code" value=""></td>
 </tr>
 <tr>
 <td>State/Province: </td>
 <td><input type="text" name="state" value=""></td>
 </tr>
 <tr>
 <td>Email Address:</td>
 <td><input type="text" name="email_address" value=""></td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 <input type="hidden" name="account_name" value="myaccount">
 <input type="hidden" name="payment_types" value="CREDITCARD|ECHECK">
 <input type="submit" value="Submit">
 </td>
 </tr>
 </table>
 </form>
 </body>
</html>

 7

WPS WEB SERVICE METHOD OVERVIEW:

The Utah GovPay WPS web service provides a secure method to pass customer transaction information
between the Agency’s web application and Utah GovPay via web service.

The WPS is the backend link into the Utah GovPay system and was designed to prevent web users from
fraudulently altering their own transaction data. WPS has two main functions, registering transactions
and querying transactions. In the registration process, the agency’s web application sends the
transaction data to WPS and WPS returns a registration ID. The Agency’s web application then
forwards the user to Utah GovPay with the registration ID.

After a completed payment transaction, the Agency’s web application can use the registration ID to
query WPS to find out if the transaction was approved.

 8

The Register Transaction process follows the following steps:

1. When the user is ready to make a payment, the agency’s web application sends details of the
payment in XML using the Soap format to the Utah GovPay Web Service or WPS.

2. The Utah GovPay WPS creates a Registration ID, stores the transaction information and
registration ID in a database and returns a registration ID back to the agency’s web application.

3. The agency’s web application redirects the user to the Utah GovPay URL and includes the
registration ID in the query string. This Utah GovPay URL will be created during the Utah
GovPay setup.

4. The Utah GovPay website uses the registration ID to retrieve the transaction data and then takes
the user through the payment process.

The Query Transaction process:

1. The agency’s web application sends a soap message with the registration ID
2. The Utah GovPay Web Service returns the results of the transaction. The details of the soap

message are listed below in the Complex XML types under TransactionDetailResponse.

WPS TERMINOLOGY

* Registration Id - The unique identifier used generated by WPS. The calling application should pass
this to WPS when the user is handed off.
* Calling Application – This is the outside application built by the agency.
* Web Service – A piece of software that can be accessed over the Internet by another application using
XML to send or retrieve information.
* Web Application – A web application uses a web site as a front end to interact with users across the
Internet.

WPS FEATURES

Current features of the WPS web service are:

 * Register Transaction Details

 9

 * Retrieve TransactionDetailResponse in XML for a single transaction
 * Retrieve StatusResponse in XML for a single transaction

OPERATIONS

The following operations are available in the WPS web service.

Register a Transaction – Information about the transaction is sent from the Calling Application to
WPS and a registration ID is sent back the Calling Application. The name of this operation is “register”.

Query a Transaction – The registration ID or a group of registration ID’s are sent from the Calling
Application to WPS and the results of the transaction are returned to the Calling Application. There are
two operations that can be used to retrieve information about the transaction after it has been processed.
* getTransaction returns all the transaction information in an XML format.
* getStatus returns transaction status information in an XML format.

Operations:

1. register

Register a transaction with WPS using the information in the RegistrationRequest object that was
passed to the operation. The register operation returns a RegistrationResponse object. This object
is populated with information relative to the operation's response. The two main items of interest
in the RegistrationResponse object are the registrationId and statusCode property. The
registrationId property contains necessary registration data. If the statusCode is less than zero,
an error has occurred and then more information about the error can be found in the errorMsg
property.

 Input: RegistrationRequest
 Output: RegistrationResponse

2. getTransaction

This operation returns a TransactionDetailResponse object populated with information based on
the requested transactionId that was originally registered with WPS. After the
TransactionDetailResponse object is obtained, the statusCode property should be analyzed. A
statusCode of less than zero, an error has occurred and errorMsg is populated with more
information.

 Input: registrationId
 Output: TransactionDetailResponse

3. getStatus

This operation returns some basic status information about the registration that was originally
registered with WPS. A StatusResponse is returned to the user as a result of this operation. After
a StatusResponse object is obtained, the statusCode should be analyzed. A statusCode of less
than zero indicates an error has occurred and the errorMsg of the StatusResponse object has

 10

more information about the error that occurred. The getStatus operation is useful when a
particular transaction is registered with the expirationTime property being greater than zero.

 Input: registrationId
 Output: StatusResponse

Protocol level properties:

USERNAME_PROPERTY which is the username.
PASSWORD_PROPERTY which is the password.
ENDPOINT_ADDRESS_PROPERTY which is the web service endpoint.

Note the protocol level properties needed to be set because the WPS web service uses BASIC
authentication for authenticating and authorizing usage of this web service. See the example code on
how to set this for JAX-WS.

WSDL URL for Test:
https://test.secure.utah.gov/wpsv2/WpsService?wsdl

WSDL URL for Production:
https://secure.utah.gov/wpsv2/WpsService?wsdl

Operation Name Input Output Faults
register * WpsAccount

* RegistrationRequest

RegistrationResponse Generic SOAP
fault should an
error occur

getTransactions * WpsAccount
* RegistrationID

TransactionDetailResponse Generic SOAP
fault should an
error occur

getStatus * WpsAccount
* RegistrationID

StatusResponse Generic SOAP
fault should an
error occur

 11

CREDIT CARD SECURITY

Utah GovPay has been designed to protect consumer’s sensitive credit card information from theft through strong

security procedures. The procedures have also been designed to reduce the risk and liability to a state agency in

processing and handling credit cards. They have also been designed to reduce the liability for the State of Utah to

be compliant with the Data Security Standard imposed by the credit card companies.

The procedures used by Utah GovPay for handling and storing credit card information is described in the following

steps.

S tep 1 . The consumer is handed from the state agency’s application to Utah GovPay before any credit card

information is requested or entered. This step limits the credit card information to be only handled between the

consumer’s browser and the SSL connection to Utah Interactive, which is outside of the firewall that the State of

Utah uses to protect agency web applications.

S tep 2 . After the consumer is connected to the Utah Interactive, they are asked to enter in their credit card

number and address. The credit card information is encrypted and sent to the Utah GovPay website where the

credit card information is then unencrypted inside the Utah Interactive firewall.

S tep 3 . The transaction details are logged in a Database but the full credit card number, credit card expiration

date, and the CVV code are not included as part of this log. Only the first 2 digits and last 4 digits of the credit

card number are stored in the log. The CVV code and the expiration date are never stored in the database log

file.

S tep 4 . The full payment details, including the full credit card number are sent to a third party processor such as

Paymentech. These details are encrypted with SSL inside the Utah Interactive firewall and transmitted directly to

the payment processor. A unique transaction number created by Utah Interactive is also sent with the credit card

information. This transaction happens outside of the firewall provided by the State of Utah.

S tep 5 . The payment processor responds to Utah GovPay with the transaction number and a message that

determines if the transaction was accepted or declined. No credit card information is sent in this response

message. This message is also sent via SSL encryption.

S tep 6 . Utah GovPay logs the payment results in the database. The log does not include full credit card

numbers, expiration date, or CVV code. At this point, Utah Interactive does not store any record of the full credit

card account number, expiration date or CVV code.

S tep 7 . Utah GovPay responds to the consumer that the transaction was either accepted or declined. The user is

able to try again and it is recorded in the Utah GovPay as a separate payment transaction.

S tep 8 . The consumer then is either directed back to the state agency website or completes the transaction. The

state agency can query the results of the transaction but the credit card number, expiration date and CVV codes

are never sent to the agency.

Utah GovPay has a reporting website where state employees are able to log in and see the details of each

payment attempt. The Utah GovPay reports displays the following information:

 12

 Credit card type,

 Partial credit card Number,

 Name on credit card,

 Address,

 Transaction ID,

 Transaction Status Messages,

 Date & Time.

Throughout the entire payment transaction, the consumer’s sensitive payment information such as full credit card

number, expiration date, and CVV are never stored on in any record in Utah GovPay and are never transmitted into

the state’s firewall. Every time sensitive payment information is sent over the Internet between the consumer and

Utah Interactive or between Utah Interactive and the third party payment processor it is encrypted with SSL.

Complex XML Types

RegistrationRequest

Property Type Size Required Description

allowedPaymentTypes String [] 128 Yes An array of values indicating the types of
payment a user can make. Possible values:
CREDITCARD, ECHECK.

items RequestItem [] > 0 Yes An array of RequestItem objects.

addrLine1 String 128 No Value to use to pre-populate the credit card
address line 1 address.

addrLine2 String 128 No Value to use to pre-populate the credit card
address line 2 address.

city String 128 No Value to use to pre-populate the credit card city
field.

emailAddr String 128 No Value to use to pre-populate the credit card email
address field.

name String 128 No Value to use to pre-populate the credit card name
field.

postalCode String 128 No Value to use to pre-populate the credit card postal
code field.

stateProvince String 128 No Value to use to pre-populate the credit card
state/province field.

 13

sharedSecretName String 128 eChecks The name of the shared secret to display to the
user. eChecks require users to confirm some
information.

sharedSecretValue String 128 eChecks A value that the user should know that is used to
authenticate them when making eCheck payment.

successMsg String 128 No A message to be displayed upon successful
payment.

successUrl String No
Limit

No The URL where the user is sent upon a successful
payment.

failUrl String No
Limit

No The URL where the user is sent upon an
unsuccessful payment.

expirationTime integer > 0 No The number of minutes to allow this transaction
to remain active in WPS before the transaction
times out. The default is 0 and is interpreted as no
timeout. In other words, if this value is not
specified, the transaction will never timeout.

Request I tem

Property Type Size Required Description

amountEach double > 0 Yes The dollar amount that this RequestItem costs.

customerId String 128 Yes A value that uniquely identifies the customer

in the calling application. Examples include

license or account numbers.

customFields RequestItemCustomField [] N/A No An array of custom fields that are passed into

WPS. See the reference for

RequestItemCustomField.

description String 255 Yes A description of the item.

quantity double > 0 Yes The quantity of this item.

transactionId String 128 Yes Unique identifier for the transaction in the

calling application. Must be unique.

transactionType String 128 No A code identifying the type of transaction that

this item is participating in. If applicable, the

FINET code should be put here.

 14

Request I temCustomField

Property Type Size Required Description

name String 64 Required only when value is also specified The name of the custom field

value String 128 Required only when name is also specified The value of the custom field

Regist ra tionResponse

Property Type Size Required Description

statusCode integer > 0 Yes The status code indicates the status of the transaction.

If status code is less than 0, it indicates there was a

problem with the request and greater than 0 indicates

the request succeeded. If status code is less than 0,

the error message should be analyzed for further

information.

errorMsg String No limit No This will only be populated if the status code has a

value less than zero which indicates there was a

problem completing the users request.

registrationId String 128 No The registration id of the transaction that was

registered with WPS.

 15

StatusResponse

Property Type Size Required Description

statusCode integer > 0 No The status code indicates the status of the transaction. If

status code is less than 0, it indicates there was a

problem with the request and greater than 0 indicates the

request succeeded. If status code is less than 0, the error

message should be analyzed for further information.

errorMsg String No limit No This will only be populated if the status code has a

value less than zero which indicates there was a problem

completing the users request.

transactionStatus String No limit No The following are the statuses and their meanings:

timed-out=the registered transaction has exceeded its time

limit in WPS.

error=the payment for this transaction received an error at

the payment gateway.

successful=the transaction was successful

declined=the payment was declined for this transaction

not-found=the requested transaction could not be found

(the registration id is invalid)

isTimedOut boolean N/A Yes This is set to false by default. It is only true if the

registered request has exceeded the timeout period set in

the expirationTime property located in the

RegistrationRequest object.

 16

Transact ionDetai lResponse

Property Type Size Required Description

statusCode integer > 0 Yes The status code indicates the status of the transaction. If

status code is less than 0, it indicates there was a problem

with the request and greater than 0 indicates the request

succeeded. If status code is less than 0, the error message

should be analyzed for further information.

errorMsg String No

limit

No This will only be populated if the status code has a value

less than zero which indicates there was a problem

completing the users request.

registrationId String 128 No The registration id of the transaction that was originally

registered with WPS.

addrLine1 String 128 No The first address line of the transaction that was originally

registered with WPS.

addrLine2 String 128 No The second address line of the transaction that was

originally registered with WPS.

authorizationCode String 10 No The code provided by the payment processor.

auxiliaryMessage String 255 No A message that provides further information about the

status message.

city String 128 No City used for the payment.

completionDate Timest

amp

N/A No The date the transaction completed.

country String 128 No The country used for payment.

error String 10 No "true" or "false" The false result could be caused by either

a success or a declined transaction.

gatewayTransactionId String 128 No The transaction id provided by the payment gateway.

name String 128 No Name used for payment.

 17

orderId String 16 No Unique order id automatically assigned by the system.

paymentSuccessful String 10 No "true" or "false" The false result could be caused by either

a technical error or a declined transaction.

postalCode String 10 No The postal code used for the payment.

stateProvince String 2 No The 2 character state/province code used for the payment.

statusMessage String 255 No The message provided by the payment processor.

Note: The total payment amount for the transaction is calculated by multiplying each
wps.service.RequestItem quantity by the wps.service.RequestItem’s amount.

 18

Web Service JAX-WS example

The following code is a sample implementation of how to use a JAX-WS client to connect to our WPS
web service. Please note that the WpsService and WpsServiceService are generated by the wsgen
generator.

package mywpstest;
import javax.xml.ws.BindingProvider;
/**
 *
 * @author jkilgrow
 */
public class Main {

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) {
 Main main = new Main();

 WpsService service = new WpsService(
 new URL("https://test.secure.utah.gov/wpsv2/WpsService?wsdl"),
 new QName("http://service/", "WpsService"));
 Wps client = service.getWpsPort();
 BindingProvider provider = (BindingProvider) client;
 provider.getRequestContext().put(BindingProvider.USERNAME_PROPERTY, "junit_test");
 provider.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY, "+49egacr");
 provider.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"https://test.secure.utah.gov/wpsv2/WpsService?wsdl");

 RegistrationResponse response = main.register(client);

// now we can examine the response to see if our registration was successful or not.
 if (response.getStatusCode() < 0) {
 System.out.println("An error occurred during transaction registration. The error message is: " +
response.getErrorMsg());
 System.exit(response.getStatusCode());
 }

 System.out.println("Apparently the transaction was successfully registered");
 System.out.println("Registration ID: " + response.getRegistrationId());

 // get the status of the registered transaction
 StatusResponse status = client.getStatus(response.getRegistrationId());

 if (status.getStatusCode() < 0) {
 System.out.println("there was a problem getting the status");
 System.out.println("error msg: " + status.getErrorMsg());
 }

 System.out.println("status response: " + status.getTransactionStatus());

 // get the transaction
 TransactionDetailResponse transaction = client.getTransaction(response.getRegistrationId());

 19

 if (transaction.getStatusCode() < 0) {
 System.out.println("there was a problem getting the transaction");
 System.out.println("error msg: " + transaction.getErrorMsg());
 }

 System.out.println("transaction response: " + transaction.getStatusMessage());
 }

 private RegistrationResponse register(Wps client) {
 RegistrationRequest request = new RegistrationRequest();
 request.getAllowedPaymentTypes().add("CREDITCARD");
 request.getAllowedPaymentTypes().add("ECHECK");
 request.setAddrLine1("123 Main St");
 request.setCity("Salt Lake City");
 request.setStateProvince("UT");
 request.setEmailAddr("test@test.com");
 request.setName("Test Request 1");
 request.setPostalCode("84111");
 request.setExpirationTime(0); // initially, we'll try the default timeout period
 RequestItem item = new RequestItem();
 item.setAmountEach(5);
 item.setCustomerId("abc123");
 item.setDescription("transaction item 1");
 item.setQuantity(1);
 item.setTransactionId("abc123-1");
 request.getItems().add(item); // potential failure point. what if the result of getItems() is null?
 RegistrationResponse response = client.register(request);
 return response;
 }
}

